

LE SYNDROME DE LOGE CHRONIQUE

Colloque du 24 août 2021 Nicolas Fragnière

DEFINITION

Syndrome de loge: élévation critique de la pression tissulaire dans un espace anatomique délimité par une enveloppe aponévrotique rigide

FORMES CLINIQUES

AIGU	CHRONIQUE
évolutif	réversible
multiple causes (trauma ++)	facteur déclenchant: effort
diagnostic clinique	diagnostic d'exclusion

Syndrome de loge d'effort: aigu ou chronique Evolution de la forme chronique à la forme aigue?

SYNDROME DE LOGE CHRONIQUE

Douleur musculaire progressive à l'effort Paresthésie, parésie Résolution des symptômes au repos Tuméfaction et induration musculaire

Entité rare, probablement sous-diagnostiquée

FACTEURS FAVORISANTS

Augmentation du volume musculaire de 20 à 30% à l'effort

Takahasi H et al. Changes in MRI in human skeletal muscle after eccentric exercise. Eur J Appl Physiol 1994

Hypertrophie musculaire

Adaptation du tissu conjonctif au stress répétitif

↑ densité des fibres de collagène

\downarrow compliance des aponévroses

Turnispeed WB et al. The effects of elevated compartment pressure on tibial arteriovenous flow and relationship of mechanical and biochemical characteristics of fascia to genesis of chronic compartment syndrome. J Vasc Surg 1995

Microtraumatismes Aponévrose Myopathie + rigide 个 P_{loge} Hypertrophie Insuffisance musculaire veineuse

Lecocq J et al. Exertional compartment syndrome. Ann Readapt Med Phys 2004

PHYSIOPATHOLOGIE

FACTEURS DE RISQUE

Jeune adulte Sexe masculin **Trouble statique** Perturbation de la coordination motrice Syndrome de McArdle Activités sportives d'endurance Microtraumatismes répétitifs Fréquence et intensité de l'effort inappropriées

Anuar K, Gurumoorthy P. Systematic review of the management of chronic compartment syndrome in the lower leg. Physiotherapy Singapore 2006

LOCALISATIONS

Jambe (95%): loge antérieure ++, atteinte bilatérale > 50% *Course à pied, roller, ski nordique* Pied: loge médiale > latérale

Course à pied, sprint, danse classique

Jowett, A., Birks, C., & Blackney, M. Chronic Exertional Compartment Syndrome in the Medial Compartment of the Foot. Foot & Ankle Int 2008

Avant-bras: fléchisseurs ++

Motocyclistes, VTT, rameurs Paraspinal

Rugby, football américain

Styf J, Lysell E. Chronic compartment syndrome in the erector spinae muscle. Spine 1987

DIAGNOSTIC DIFFERENTIEL

Jambe:

périostite, fracture de fatigue, TVP, tendinite, syndrome radiculaire, artériopathie périphérique, syndrome du vol poplité, néoplasie, fibromyalgie

Pied:

fasciite plantaire, fracture de fatigue, syndrome du tunnel tarsien, tendinite du jambier postérieur

Padhiar N et al. Chronic exertional compartment syndrome of the foot. Sports Med Arthrosc 2009

ANAMNESE

Interrogatoire méticuleux: douleur progressive à l'effort, soulagée au repos sollicitations musculaires intenses et répétées précision et reproductibilité du délai d'apparition des douleurs localisation caractère bilatéral présence de facteurs de risque

EXAMEN CLINIQUE

le plus souvent peu contributif au repos

avec l'effort déclencheur: hernies musculaires tuméfaction induration douleur à la palpation

Villatte G et al. Bilateral simultaneous chronic exertional compartment syndrome of the lateral forefoot: A case report (compartment syndrome of the forefoot). J Orthop Surg 2019

SEMIOLOGIE

Induration musculaire Hernie à l'effort Douleur à l'effort Pas de douleur au repos

	ICP <	ICP > 30 mmHg n = 96	Positive likelihood ratio (presence of parameter)	Negative likelihood ratio (absence of parameter)	Þ
Clinical parameters	30 mmHg $n = 29$				
Absence of pain at rest	72.4	96.8	1.33	0.11**	<.001
Absence of pain on palpation at rest	58.6	88.5	1.51	0.27**	<.001
Bilateral pain	68.9	59.3	1.10	0.77	.60
Muscle hardness	20.6	82.2	3.97*	0.22**	<.001
Stopping exercise due to pain	68.9	86.4	1.25	0.42	.58
Pain recidivism for the same exercise	65.5	91.6	1.4	0.24**	.01
Pain irradiation	27.5	6.2	0.22	1.29	.004
Paresthesia	27.5	14.5	0.52	1.17	.18
Muscle hernia at rest	3.4	31.2	6.93**	0.71	.005
Muscle hernia after exercise	3.4	39.5	8.8**	0.67	<.001
Post-effort muscle weakness	10.3	34.3	3.27*	0.73	.023
Post-exercise muscle hypertrophy	0	7.2	ns	0.82	.30

**Very useful parameters; *sometimes useful parameters.

Fouasson-Chailloux A et al. Determination of the predictive clinical parameters to diagnose chronic exertional compartment syndrome. Eu J Sports Sci 2017

IMAGERIE

But: écarter les autres diagnostics possibles IRM: œdème musculaire → hypersignal T2 Pedowitz RA et al. Modified criteria for objective diagnosis of chronic compartment syndrome of the leg. Am J Sports Med 1990

DEMARCHE DIAGNOSTIQUE

Délai moyen de 2 ans entre l'apparition des symptômes et l'établissement du diagnostic

Vajapey S, Miller TL. Evaluation, diagnosis, and treatment of chronic exertional compartment syndrome: a review of current literature. Phys Sports Med 2017

MANOMETRIE A L'AIGUILLE

Paramètre objectif Pas toujours disponible Techniquement délicat

→ critère utilisé dans seulement 35% des centres

Tzortziou V et al. Diagnosis and management of chronic exertional compartment syndrome (CECS) in the United Kingdom. Clin J Sport Med 2006

INTERPRETATION DES VALEURS DE PRESSION

Valeurs normales:

< 10mmHg au repos

< 25mmHg après l'effort soutenu

Mollica MB et Duyshart SC. Analysis of pre- and post exercise compartment pressures in the medial compartment of the foot. Am J Sports Med 2002

Seuils diagnostiques:

P_{loge} au repos > 15mmHg

 P_{loge} 1 minute après effort > 30mmHg

P_{loge} 5 minutes après effort > 20mmHg

Pedowitz RA, Hargens AR, Mubarak SJ, et al. Modified criteria for the objective diagnosis of chronic compartment syndrome of the leg. Am J Sports Med 1990

AUTRES MODALITES DIAGNOSTIQUES

US à haute résolution

détermination indirecte de la pression veineuse

Thalhammer C et al. Noninvasive central venous pressure measurement by controlled compression sonography of the forearm. J Am Coll Cardiol 2007

Scintigraphie après effort

évaluation de la perfusion tissulaire

Edwards PD, Miles KA, Owens SJ, Kemp PM, Jenner JR. A new non-invasive test for the detection of compartment syndromes. Nucl Med Commun. 1999

Test de compression avec sphygmomanomètre

TRAITEMENT CONSERVATEUR

Réduction / éviction de l'activité physique Physiothérapie – étirements, massages Correction des troubles statiques AINS

Hydratation

Blacklidge, D. K., Kurek, J. B., Soto, A. D. R., & Kissel, C. G. Acute exertional compartment syndrome of the medial foot. J Ankle Foot Surg 1996

Injection IM de toxine botulinique

Isner-Horobeti ME, Dufour SP, Blaes C, et al. Intramuscular pressure before and after botulinum toxin in chronic exertional compartment syndrome of the leg: a preliminary study. Am J Sports Med 2013

PREVENTION

Influence du type d'attaque du pas lors de la course: réception sur l'avant-pied (versus talon)

✓ diminution du travail excentrique des extenseurs

X augmentation de l'activité excentrique des fléchisseurs Diebal AR et al. Forefoot Running Improves Pain and Disability Associated With Chronic Exertional Compartment Syndrome. Am J Sports Med 2016

TRAITEMENT CHIRURGICAL

Gold standard = dermofasciotomie sélective à ciel ouvert

Abord percutané jambe, avant-bras Fasciotomie endoscopique patients pédiatriques Fasciotomie écho-guidée

Complications: lésion nerveuse, hématome, tr. de cicatrisation, CRPS

FASCIOTOMIE DU PIED

RESULTATS

Fasciotomie supérieure au traitement conservateur en termes de satisfaction et de résultat fonctionnel

Packer JD et al. Functional outcomes and patient satisfaction after fasciotomy for chronic exertional compartment syndrome. Am J Sports Med 2013

> 80% de récupération complète du niveau d'activité

Irion V et al. Return to activity following fasciotomy for chronic exertional compartment syndrome. Eur J Orthop Surg Traumatol 2014

Facteurs pronostiques: âge, délai de prise en charge, valeurs de pression compartimentale

Slimmon D et al. Long-term outcome of fasciotomy with partial fasciectomy for chronic exertional compartment syndrome of the lower leg. Am J Sports Med 2002

MERCI POUR VOTRE ATTENTION